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Preface 
 
This 3rd workshop on “CFDforPIV” has been jointly organized by DLR, ONERA and TU Delft in the frame of the 
H2020 project HOMER (GA number 769237) and follows the tradition of the two previous workshops organized 
2016 in Lisbon and 2017 in Delft. It comprises of contributions from developers who are aiming at improving image 
processing methods for time-resolved and/or 3D Particle Image Velocimetry (PIV) or Lagrangian Particle Tracking 
(LPT) or enhancing the information measured by using techniques imported from the CFD and applied 
mathematics community. The advent of time-resolved and volumetric measurements has multiplied the 
possibilities with much excitement of the PIV and LPT community as well as of researchers in the field of applied 
fluid mechanics. The methods range from regularization strategies using the (simplified) Navier-Stokes-equation 
or the use of the momentum equation to obtain pressure from velocity and acceleration measurements, over 
machine learning approaches to variational data-assimilation frameworks using adjoint CFD.  
In the frame of the 1st Challenge on Data Assimilation and Lagrangian Particle Tracking a synthetic experimental 
procedure generating virtual particle trajectories and camera images has been developed allowing for testing and 
assessing the capabilities of LPT evaluation codes and data assimilation approaches. A direct comparison of 
results gained with different existing and new codes became possible while each result can be assessed 
individually with the given ground truth input data based on a LES simulation of a complex turbulent shear flow 
and related uncertainty measures can be delivered. 
This Book of Abstracts shall summarize the research presented at the 3rd workshop on “CFDforPIV”. Hopefully 
the event will spark new ideas and collaborations! 
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Velocity and pressure measurements of a turbulent 

boundary Layer at 80 kHz using 2D PIV  
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Abstract 
High-speed particle image velocimetry (PIV) was used to measure the turbulent boundary layer over a body of revolution. 
A narrow wall-normal strip of the flow field was captured using a high-speed laser and camera at a recording frequency 
of 80 kHz. The resulting high-speed PIV statistical quantities were shown to compare well with dual-pulse high-resolution 
PIV and direct numerical simulations (DNS), at similar conditions. The high-speed PIV velocity energy spectra were 
found to compare well with hot-wire spectra. The instantaneous pressure field was indirectly extracted by methods 
outlined in [1]. Preliminary pressure fields from PIV are presented and will be subject of further investigation.   
 

The measurements were conducted at the Defence Science and Technology (DST) Group Low Speed Wind Tunnel. The 
test section is an irregular octagon, 2.74 m wide, 2.13 m high, and 6.56 m long. The geometry used in this study is an 
axisymmetric body of revolution and is based on a concept design of a conventional diesel-electric submarine without a 
casing or appendages. Such geometries are of particular interest in the maritime and aeronautical domains as they 
represent the simplest form of an underwater craft or aircraft fuselage and thus serve as an excellent benchmark to assess 
near-wall flow quantities before embarking on more complex geometries. The test model, as mounted on twin airfoil 
supports is shown in Fig. 1(b) and has length (L) of 2000 mm, and a diameter (D) of 273.66 mm. Refer to [3] for a detailed 
description of the model. The model was tested at zero incidence (yaw and pitch) with a tunnel airspeed of 28.8 m/s. The 
nominal Reynolds number based on the length of the model, ReL = 4.0 × 106. A circumferential ring of trip dots was 
located on the nose at 5%L to enable laminar-to-turbulent transition of the surface flow. The high-speed PIV 
measurements were conducted at the axial stations (x/L) indicated in Fig. 1(a). 
 

Two-dimensional (2D) PIV was undertaken with tracer particles (DEHS) illuminated by an InnoLas Nanio Air (532-10-
V-SP) high-speed laser and imaged by a Phantom v2640 high-speed camera. The displacement of particles in interrogation 
windows (IW) was determined by LaVision DaVis 10.1 PIV software. The laser light sheet was aligned with the stream-
wise direction with the camera orthogonal to the laser sheet therefore allowing the measurement of instantaneous 
streamwise (U) and wall-normal (W) velocity components. The high-speed PIV method outlined by [4] is employed. The 
light sheet of the high-speed laser is limited to a narrow strip (5 mm × 55 mm), in the stream-wise and wall-normal 
directions, to maintain sufficient laser energy for PIV. An image magnification of 24.62 px/mm was achieved by using a 
large focal length lens, Nikon AF-S 400 mm f2.8 lens with an actuated aperture control mechanism as described in [3]. 
For a capture rate of 80 kHz, camera limitations required a cropped image width in the x-direction of 144 px and 1664 px 
in the z-direction. The camera on-board RAM (288 GB) allowed 800,000 consecutive images to be collected over 10 s. 
The high-speed PIV measurements were compared with two-pulse high-resolution 2D PIV measurements which were 
obtained with a Nikon AF-S 300 mm f4 lens fitted with a 3×	teleconverter. At an observation distance of 1.5 m, the spatial 
resolution for the high-resolution PIV was 121.2 px/mm. For both PIV methods, elliptical 4:1 aspect ratio Gaussian 
weighted IW are employed with the larger dimension in the flow direction to maximise wall-normal spatial resolution 
while ensuring sufficient particle counts per sample.  
 
The focus of this paper will be at the axial station x/L = 0.449. At this location the boundary layer flow exhibits a near 
zero pressure gradient - ZPG (-0.4 Pa/m). Since the curvature parameter (defined as the ratio of the boundary layer 
thickness, d99 = 13.39 mm, to the radius of curvature, rm = 133.9 mm) is small (i.e. d99/rm ≪ O(1)), the flow here, should 
follow the canonical flat plate solution [3]. The PIV measured boundary layer characteristics at x/L = 0.449 are as follows, 
the estimated friction velocity, ut = 1.17 m/s (via Clauser chart), viscous length-scale, n/ut = 0.012 mm (a `+’ superscript 
indicates inner normalisation by ut /n), the skin friction coefficient, Cf = 0.00319, and shape factor, H = 1.40. The 
corresponding momentum thickness Reynolds number, Req = 3163 and friction Reynolds number, Ret = 1087. The 
measured boundary layer data are compared with canonical flat plate DNS [4].  The DNS parameters are, Cf = 0.00312, 
H = 1.395, Req = 3270 and Ret = 1040, indicating only a small mismatch with our x/L = 0.449 data.   
 

The boundary layer profiles and normalised Reynolds stresses for both PIV methods and DNS are shown in Fig. 1(c).  
The corresponding IW size in wall units (IW+) for both the PIV methods are shown. Following the method of [2], the 
DNS data are filtered to match the spatial resolution of PIV (with x, y, z resolution: IW+, light-sheet thickness+, IW+) and 
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are also plotted in Fig. 1 (c). The pre-multiplied power spectral densities (PSD) are shown in Fig. 1(d) for five wall heights 
and are compared with hot-wire measurements (at z+ = 100 and 560). The hot-wire signal was acquired at 20 kHz but was 
truncated at 8 kHz due to spurious high frequency noise. For the high-speed PIV the cut-off frequencies based on the 
finite IW width (16 px = 0.65 mm) are shown at the two wall heights. The good agreement between the PIV, hot-wire and 
the DNS filtered data validates the accuracy of the PIV datasets. 
 

The instantaneous pressure fields were extracted from the high-speed PIV velocity fields using 
DaVis 10.1 pressure solver [1], which integrates the pressure gradient of the incompressible 
Navier-Stokes equations. The material derivative term was obtained by pseudo-Lagrangian 
tracking of the PIV velocity fields, where a quadratic polynomial is fitted iteratively at each grid 
point to match the velocity fields over 5 time-steps. Velocity and acceleration at each grid point 
are then evaluated from the polynomial fit. The pressure field is obtained by numerically solving 
a Poisson equation. A space-time block size of 5 time-steps was simultaneously considered for 
a single solution to the Poisson equation. An additional step of estimating the convection velocity 
was performed to strengthen the temporal coherency. Neumann boundary conditions were used 
at each boundary and Dirichlet in the freestream, corresponding to the tunnel freestream static 
pressure (102.032 kPa). A preliminary instantaneous pressure field is shown in Fig. 1(e). Prior 
to conducting a detailed study, a series of comparisons will be undertaken to validate the 
extracted pressure from the high-speed 2D PIV. Firstly, the mean pressure at the nearest wall 
measurement point will be compared with the static wall pressure from [3]. Secondly, the mean 
pressure field will be compared with the boundary layer profile measured by a Pitot probe from 
[3]. Finally, the pressure fluctuations from the PIV will be compared with the DNS data of [4].   
 
 
 

 
 

 

 

 

 

 

 

 
 

 

 

Fig. 1 (a) Test geometry, measurement locations and PIV field-of-views (FoV). (b) Experimental PIV set-up.                         
At measurement station, x/L = 0.449, (c) boundary layer profiles (U+) and normalised Reynolds stresses (uu+, ww+) from 
PIV compared with DNS [4], (d) pre-multiplied energy spectra (f	×PSD) at five wall-heights compared with hot-wire                 
(at z+ = 100 and 560), and (e) an instantaneous pressure field.  
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Shake-The-Box particle tracking with variable time-
steps in flows with high velocity range (VT-STB) 
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Abstract 
In recent years, Lagrangian Particle Tracking (LPT) has become more and more important in the field of 3D flow 
measurements, largely due to the introduction of the methods of Iterative Particle Reconstruction (IPR, Wieneke 2013) 
and Shake-The-Box (STB, Schanz et al. 2016). Applying the STB algorithm, particles can be tracked in large numbers, 
with a nearly complete suppression of ghost particles. The ability of the STB algorithm to discern real particles from 
ghost particles is largely stemming from the observation that for real particles the change of acceleration is small 
between time-steps, while ghost particles are generated in quasi-random locations all over the measurement volume. 
However, this assumption only holds if the particles exhibit a certain amount of movement relative to each other, such 
that the ambiguities ‘de-correlate’ within few time-steps. In many flows this assumption holds, however flows with a 
high velocity range can exhibit regions in space with only very little movement of the particles (e,g, jet flows). As the 
time separation has to be chosen such that the fastest particles are reliably tracked, particles in the surrounding flow 
might move only a fraction of a pixel in the same time. Another potentially problematic effect of slowly moving particle 
clouds is that situations of overlapping particle images are retained over several time-steps. 
We see that a slowly moving particle field is detrimental to the tracking process in multiple ways. In this work we 
propose an extension to the standard STB evaluation, which applies multiple iterations of particle tracking with variable 
time-separation. The idea is to start the evaluation with a time separation such that the slowest particles of the flow can 
be optimally tracked. From there, the time-separation is iteratively reduced, tracking faster and faster particles with 
every iteration. Finally, the original time-separation of the recording is reached, where only the fastest particles - whose 
velocity initially determined the recording rate - remain to be tracked. The involved steps are detailed in the following 
 

1. Choose a suitable temporal Δ�,��� such that the slowest particles move at least one particle image diameter 

from image to image, where Δ�,��� is the number of omitted snapshots.  
2. Perform particle tracking on the selected subset of snapshots. 
3. Filter the gained trajectories using a fitting method with a suitable kernel-size.  
4. Choose a finer temporal resolution Δ�,��� < Δ�,� for the next iteration. 

5. Interpolate the filtered trajectories from Δ�,� to the time-steps given by Δ�,��� 

6. Perform particle tracking on the snapshots given by Δ�,���, while feeding the interpolated particle clouds from 
the previous iteration as a partial pre-solution to the reconstruction of each snapshot 

7. Repeat steps from 3 to 6 until Δ�,��� = 1 is reached. 
 

The VT-STB approach is applied to an experimental dataset, measuring the flow of a small diameter jet impinging on a 
circular cylinder. The setup is placed in a regular cylindrical 16-faces glass tank (see Fig. 1). A jet is generated by a 
nozzle of diameter d = 3 mm and is impinging onto a circular cylinder with diameter dC = 52 mm at an angle of 45°.  

 

    
Fig. 1: Left: Setup for the water jet experiment. with four Phantom V2640 cameras viewing into the water tank, which 
is illuminated from two sides by high-power white LED arrays. Middle: 16-face water tank with submerged cylinder  
(dc = 52 mm) and d = 3mm nozzle at 45° impinging angle. Right: Schematical experimental setup from top view (a), 
and side view (b). Cylinder in blue, nozzle in yellow, centerline flow in red and the illuminated area as a dashed line.  
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The maximum jet velocity was vMAX  = 6 m/s, corresponding to a Reynolds number of 17,875. For a more detailed 
description, see (Kim et al. 2018), where a comparable setup was employed in air.  
VT-STB was applied in the following fashion: 5 iterations were performed, starting with a time separation of Δ�,� = 79 
time-steps (the slowest particle move approx. 2.4 pixel in this interval, corresponding to approx. one particle image 
diameter). The following iterations feature time separations of Δ�,� = [36, 14, 6, 1] time-steps.  
The operating principle of VT-STB is illustrated in Fig. 2, left. For each iteration, a 10mm - thick slice of the volume, 
centered around the nozzle is visualized, showing particle tracks over approx. 500 time-steps (based on the original 
sampling; the effective length varies slightly due to the different time separations). The particles tracked at Δ�,� = 79 
(see Fig. 2 left, top) are located in the entrainment region and below the cylinder, far from the wake of the jet. 
Maximum velocities of approx. 0.12 m/s are attained. When moving to iteration 3 (Δ�,� = 14, Fig. 2 left, middle), 
maximum velocities of 0.7 m/s can be tracked. Large parts of the wake region below the cylinder appear in the tracking 
system. Finally, when Δ�,� = 1 is reached in iteration 5 (Fig. 2 left, bottom), the remaining fast particles from the jet and 
its direct surroundings are tracked. Maximum velocities of 6 m/s are seen, as expected.  
In order to assess the benefits of VT-STB over regular processing using Δ� = 1, the results are compared to a normal 
STB evaluation over 1,000 images. Fig. 2 (right) shows comparisons between the two reconstructions in two selected 
subvolumes. Both evaluations correctly capture the vast majority of the tracks, however for STB a relevant amount of 
tracked particles appears within the cylinder, indicating ghost tracks (not shown here). For VT-STB this region is nearly 
completely void. When focusing on a smaller region (see Fig. 2, right, top) it is obvious that the normal STB-result is 
interspersed with both outliers, as well as a sizeable number of tracks with velocities close to zero, appearing in regions 
with visibly higher flow velocity. The VT-STB result is free of both types of abnormal particle tracks. At the same time, 
the tracks of slow particles exhibit less noise, as the filtering is carried out on a broader kernel, minimizing the effects of 
long-lasting overlap situations. 
Similar pheneomena are seen when looking at a x-z plane located on the upper edge of the measurement volume, above 
the jet (viewing from top, see Fig. 2 right, bottom). The STB evaluation shows clear signs of ‘line-of-sight’-tracks, 
where particles follow the viewing direction of a singular camera, as their intensity is mostly supported by a peak on 
that specific camera. Furthermore it can be seen that some of the particles in the center of the vortex that are present for 
VT-STB are missing for the STB evaluation. 
For the examined flow, VT-STB processing shows profound advantages; however it has to be stressed that this case 
represents an extreme in terms of velocity range and volume ratio of fast and (very) slow moving particles. For most 
experimental investigations, normal STB evaluations will show significantly less ghost particles, still we expect benefits 
of VT-STB processing in many flows. 
 

 
Fig. 2: Left: VT-STB tracking with 5 iterations, showing iterations 1, 3 and 5 with time separations of �� = 79, 14 and 
1 time-steps. Right: STB processing (left) vs. VT-STB processing right) in two exemplary regions. 

References 
Kim, M., Kim, H. D., Yeom, E., & Kim, K. C. (2018). Flow characteristics of three-dimensional curved wall jets on a 

cylinder. Journal of Fluids Engineering, 140(4), 041201. 
Schanz D, Gesemann S, Schröder A (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 

57(5), 70. 
Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008 

 

 

 

 
 

 
 



3rd Workshop and Challenge on Data Assimilation & CFD Processing for PIV and LPT 
November 19-20, 2020, Paris, France 

 

A dense PIV system: a solution for rapid data 

assimilation  
Antonios Giannopoulos1,2, Pierre Chatelier3 and Jean-Luc Aider1  

 

Email: antonios.giannopoulos@espci.fr 

 
1 Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS UMR7636, ESPCI Paris, 

PSL Université, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France 

 
2 Photon Lines, Parc Pereire Bat B, 99 rue Pereire, 78100 Saint-Germain-en-Laye, France 

 
3 See Fast Technologies, 99 rue Péreire Parc Péreire, Bât.B, 78100 Saint-Germain-en-Laye 

 

 

The presented system is developed around the image acquisition and processing platform Eyemotion, developed by 

SeeFast Technologies. Eyemotion is a native code software, with built-in image processing tools adapted for large data 

flows. It can be used for actuator signal sending and receiving, laser-camera synchronization and real-time image post-

processing. We developed a plugin extension of the said software in a .NET platform, integrating a dense 2D-2C Lukas-

Kanade Optical Flow (LKOF) PIV algorithm, implemented in CUDA functions. The algorithm was first developed at 

ONERA [1] and later adapted for the real-time calculation case by PMMH lab[2]. One vector per pixel is calculated, with 

a precision of the order of a tenth of a pixel and a maximum displacement of up to 20 pixels. The goal of the system is 

also the real-time calculation of other velocity-derived variables calculations, like vorticity field, λci criterion and scalar 

values like the recirculation area, or the sum of the kinetic energy of the field. The system can be used in real-time mode, 

during image acquisition, or offline in post-processing mode. A continuous and pulsating laser mode was designed and 

integrated. A high and low calculation speed option can be selected for hardware and software parameters of the system, 

depending on the application. The only PIV parameters for the user are the kernel radius, the pyramid level size and the 

number of Gauss-Newton iterations [1]; no further complicated filters or spurious vector rejection process is applied. 

The presented setup shows great potential in the fast PIV calculation, large data-base creation (suitable for data-hungry 

machine learning methods), and PIV setup diagnostic with relatively low disk space occupancy. The optimal setup 

consists of a high-speed camera, an optimal GPU, and a RAID0 disk configuration. Different versions of the system have 

been proven already to facilitate neural-network system identification experiments[3], as well as machine learning closed-

loop control experiments[4]. The present LKOF algorithm has also be applied in different type of experiments, not only 

PIV images; an example of an application in a blood platelets flow experiment is presented in figure 3. 

 

 
Fig. 1 System scheme: Optimized image acquisition, fields calculations, saving or actuator reaction. 
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The system spatial resolution and computational time has been validated using synthetic PIV images and various 

hydro/aerodynamic datasets (turbulent boundary layer, backward-facing step and grid turbulence wind tunnel 

experiments); it shows great potential for post-processing speed-up and saving in hard space. A real-time field saving 

option has been integrated, in order to avoid saving images and save disk space; fields are saved in a low disk space 

format. Particularly for 16 bit images, the value of Mb(field)/Mb(image) ratio is around 1, which shows that a saving of 

order 50% disk space can be achived. It has been tested for various image sizes up to 16 Mp and various GPUs. A multi-

GPU calculation option is also being investigated.  

 

  
Fig. 2 POD coefficient prediction for neural-network training and validation dataset (left), and velocity field 

reconstruction (right) for experimental, time-resolved Backward Facing Step flow (Reh=1385).  

 

 

 

 

 

 

 

Fig. 3 Blood platelets flow image (left) velocity field calculation (right) Experiment from: L.Bellebon, PMMH. 
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Abstract 

In recent years Lagrangian Particle Tracking (LPT) has received a renewed interest, fostered by the advances of 

volumetric velocimetry and technology for time-resolved applications. The main advantage of direct tracking of particle 

images resides in suppressing the averaging effect of cross-correlation-based algorithms. On the other hand, tracking of 

individual particles provides vectors/tracks on a scattered grid, thus posing the problem of interpolating data on a mesh 

for later data processing. In this process, the choice of the mesh size onto which interpolate the data is inevitably bound 

by the mean particle spacing. Considering that the particle spacing is spatially and temporally variable, often 

conservative selections should be pursued, unless temporal information or physical constraints are introduced. In non-

time-resolved applications this is often hard to achieve, thus posing a limit to the final achievable resolution. 

For statistical analysis, this limitation is overcome by Ensemble PTV (Cowen and Monismith 1997, Kähler et al. 2012), 

which is based on generating dense clouds of vectors from the ensemble of snapshots and averaging in bins with 

sufficiently large number of vectors to obtain local statistics. Enforcing ergodicity, it is possible to improve significantly 

the Dynamic Spatial Range of the statistics by blending information from the entire dataset. In principle the lower 

bound for the resolution relates directly to the root-mean-square error of the particle-center detection, thus resulting in a 

sub-pixel resolution limit (Kähler et al 2012). On the downside, however, the instantaneous information is dropped and 

in principle cannot be retrieved directly with the same resolution. 

 

The Data-Enhanced Particle Tracking Velocimetry (DEPTV, Cortina-Fernández et al 2020) is an unsupervised model-

free algorithm which merges the ideas of Ensemble PTV and of gappy Proper Orthogonal Decomposition (Everson & 

Sirovich 1995, Venturi & Karniadakis 2004) to create high-resolution ensemble particle modes. These modes constitute 

a fully data-driven dictionary for the extraction of high-resolution flow fields. The ensemble particle modes are obtained 

through the following procedure (the reader is referred to Cortina-Fernandez et al 2020 for a more complete 

description): 

• PIV standard processing of the images, which will deliver the low-resolution velocity fields, to be arranged in 

the form of snapshot matrix (Sirovich 1987) 𝑈𝑃𝐼𝑉 (with each row being a snapshot) 

• Singular Value Decomposition of the snapshot matrix 𝑈𝑃𝐼𝑉 = Ψ𝑃𝐼𝑉Σ𝑃𝐼𝑉Φ𝑃𝐼𝑉
𝑇  

• PTV processing of the images to extract the scattered velocity vectors on each snapshot 

• Selection of the bin size by setting the desired number of particles in each bin.  

• Computation of the PTV snapshot matrix 𝑈𝑃𝑇𝑉, which contains, for each snapshot, 0 in empty bins and average 

velocity for bins containing one or more particles 

• Calculation of high-resolution ensemble particle modes from projection of 𝑈𝑃𝑇𝑉 on the PIV temporal basis 

Ψ𝑃𝐼𝑉, and scaling to account for the number of non-empty bins corresponding to each location: 

(ΣΦT)𝐷𝐸𝑃𝑇𝑉 = �̂� ⊙  Ψ𝑃𝐼𝑉
𝑇 𝑈𝑃𝑇𝑉 

where �̂� is the reciprocal of the fraction of non-empty bins for each location, and ⊙ is the Hadamard product. 

• Calculation of high-resolution velocity fields: 

𝑈𝐻𝑅 = Ψ𝑃𝐼𝑉(ΣΦT)𝐷𝐸𝑃𝑇𝑉  

 

The method is validated on numerical and experimental data. The experimental validation has been carried out in the 

Göttingen-type wind tunnel of UC3M, with test section of 40x40cm and turbulence intensity of 1%. Two side-by-side 

cylinders have been mounted in the test section, as illustrated in Fig. 1, left. The cylinders have diameter of D=20mm 

and d=2mm, respectively, and their axes separation is equal to D. Velocity field measurements are carried out in the 

wake of the cylinders using two ANDOR Zyla sCMOS 5.5MP cameras (2160x2560 pixel array, 6.5µm pixel size) with 

partially overlapped field of view. One camera is equipped with a Tokina objective with 50mm focal length, with 

resolution of approximately 10.3 pix/mm. This camera is used to test the DEPTV algorithm, since it would not have 

enough resolution to discretize the wake of the smallest cylinder. From now on it will be referred as “low-resolution” 
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camera. The other camera is equipped with a 100 mm focal-length Tokina objective, with a resolution of 22.6 

pixels/mm, and will be used as a reference for comparison. This will be referred in the following as “reference” camera. 

The PIV image analysis was carried out with a multi-grid multi-pass code, with final interrogation window of 64x64 

pixels for both cameras, and 75% overlap. A set of 12000 images is used for DEPTV to achieve sufficient convergence. 

The final bin size for DEPTV is 16x16 pixels, thus aiming to a x4 improvement of the dynamic spatial range. 

 

An example of instantaneous crosswise velocity field obtained with the low-resolution and reference camera is reported 

in the first and second column of Fig.1, right. The freestream velocity 𝑈∞ and the diameter of the larger cylinder D are 

used as reference quantities to represent the results in non-dimensional form. The center of the reference system 

corresponds to the axis of the larger cylinder. It can be observed that the standard PIV on the low-resolution cameras 

can capture the wake of the largest cylinder with reasonable accuracy if compared to the reference one. On the other 

hand, the vortices shed in the wake of the smallest cylinder are significantly attenuated. The results obtained with the 

DEPTV process are reported in the right column of Fig.1, right. It can be clearly observed that the wake features in the 

wake of the large cylinder are recovered with less smoothing than the standard PIV on the low-resolution camera, and 

that the fluctuations due to the vortices shed in the wake of the small cylinder are recovered. This is particularly evident 

when observing the inset of Fig.1, right, with a magnified view of the wake of the small cylinder. 

 

         
Fig. 1 Left: sketch of the experimental setup (1-laser, 2-mirror, 3-spherical lens, 4-cylindrical lens, 5-low-resolution 

camera, 6-reference camera, 7-wind-tunnel test section). The field of view of the low-resolution and reference cameras 

are indicated with a red and a blue rectangle, respectively. Right: comparison of the instantaneous crosswise velocity 

field for the low-resolution camera (left column), reference camera (center column) and DEPTV process on the low-

resolution camera (right column). The top row includes the full field of view, while the inset is represented in magnified 

view in the bottom row. Figures adapted from Cortina et al. (2020). 

 

Code availability 

A sample Matlab code of the DEPTV algorithm is available on GitHub: https://github.com/StefanoDiscetti/DEPTV  
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Abstract

Shake-the-Box (STB) method (Schanz er  al.  2016) has become the de facto standard  Lagrangian  Particle Tracking
(LPT) approach that reconstructs the 3D particle tracks from time-resolved particle-seeded stereoscopic images. To our
knowledge, the STB is the only available LPT method on the market that works on highly concentrated particle images
(beyond 0.1 particle per pixel (ppp)). Many developments on the STB method have been published ever since. Some
developments concentrated on extending the power of STB to other types of data. For example, Novara et al. (2016,
2019) proposed the multi-pulse STB to deal with high-speed flow applications where the time-resolved data is not
available. Tan et al. (2020) introduced the pruning algorithm to remove ghost particles and applied the STB method to
blurred particle images.  Others are more application-specific concerning a particular sub-module of the whole LPT
workflow, such as the calibration procedure (Schröder et al.,  2020). But very few works exist to improve the core
tracking ability of STB. STB's core tracking scheme features a prediction phase that forecasts a particle's position for
the current frame given its history and a correction phase that finds its optimal location around its predicted position by
minimizing the gap between the records and the projected image residual. We argue that the optimization scheme in
STB, initially proposed in Wieneke (2012), can be less effective or even fail with the sparse temporal data or with data
extracted from complex flows. The consequences are either one track is terminated prematurely,  or one particle is
identified on the wrong track. The main reason is that STB's optimization scheme requires the cost function to be
relatively smooth locally to perform well. This high level of smoothness can not be guaranteed when the predictor failed
to provide a good starting point for data with large-time separation or local complicated flow structure. In this work, we
propose a tracking scheme rooted in the function learning/approximation paradigm. For particle p, we intend to learn a
nonlinear function f that maps the image set Пp, containing the small square local patch Ip extracted from the recorded
image for all cameras, to Xp, the particle's 3D coordinate. The function f can be learned by minimizing an empirical risk
loss built on sample pairs (Пp, Xp). The sample image set is obtained using the camera model and the optical transfer
function.  Under  this  formulation,  the  resulting algorithm can  be  solved  efficiently  using  gradient-based  algorithm
therefore much more robust. This solution can be expressed efficiently using the kernel function  k(●,●).  The kernel
measures the similarities between the two sample images and controls the goodness of the solution. One is encouraged
to choose a  valid and pertinent kernel function that mostly represents the characteristic of data.  Our approach is based
on kernel methods and is thus called Kernalizaed LPT (KLPT). KLPT is evaluated against both synthetic and real
experiments. The synthetic data is generated based on a Large Eddy Simulation data simulating the turbulent cylinder
wake-flow at Re3900 (Parnaudeau et al. 2018). Figure 1 shows the mean error of detected particles of KLPT and
compared  to 2 different  implementations of STB (one  from an in-house code,  one from the commercial  software
Davis10.4). Our KLPT produces satisfactory results for data with medium to high ppp levels and large time separation.
We also apply KLPT and STB (Davis 10) to data depicting an impinging jet at Re2500. Figure 2 visualizes a subset of
the tracks reconstructed by STB (left) and KLPT (right). We observe that, compared to STB, KLPT can capture longer
tracks and allows more detailed flow reconstruction at highly turbulent regions. We conclude that our KLPT scheme
always is more robust compared to STB and more accurate for densely seeded particle flow fields.

Another line of work concerning STB is to retrieve the volumetric data (typically velocity) on Eulerian grids from the 
Lagrangian data generated by STB. Representative methods include FlowFit (Gesemann et al. 2016) and VIC+ 
(Schneiders et al. 2016)/VIC# (Jeon et al. 2018). Their main idea is to leverage the volumetric velocity field between 
the particle-based data and an Eulerian dynamical model's solution. We argue that if only the Eulerian flow variables 
are needed, it is naturally more accurate to base our knowledge on raw images instead of passing through the redundant 
LPT procedure. On the other hand, the TomoPIV method estimates the volumetric velocity field by first reconstructing 
the 3D voxel intensity volume from 2D stereoscopic images, then inferring the 3D velocity vectors using volume 
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correlation techniques. Our proposed method Lagrangian PIV (LAPIV, Yang et al. 2019), differs from the above two 
approaches. Our primary motivation is to directly infer the volumetric velocity fields from raw image data without any 
intermediate procedure. To this end, we adopt the above kernel formulation under KLPT, taking account of a transport 
model that links the particles’ 3D coordinate X at frame k to the Eulerian velocity field at frame k-1. By doing so, we 
are able to obtain the unknown flow velocity field. Our formulation allows estimating the velocity vector through 
tracking a group of particles, contrary to single-particle tracking done in KLPT. Naturally, LAPIV can handle particle 
image data of very high ppp levels (beyond 0.12) at which any single-particle tracking scheme failed to converge. 
Inspired by the successful practice in optical flow estimation, we implemented a coarse-to-fine estimation scheme 
combined with the median filtering of the estimated velocity field. The added trick is able to handle large displacement 
and can significantly boost the performance of our proposed approach. LAPIV can deal with both time-resolved and 
two-pulse data. Although labeled as a PIV approach, LAPIV can also produce accurate particle positions. This feature is
particularly relevant for very high ppp data. The results will be shown during the workshop.

        

Fig. 1 Synthetic test result on mean error of detected particles. Fig. 2. The particle tracks of the first 3000  reconstructed particles
visualized at the 50th snapshot: left, STB in Davis, right, KLPT.          
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Abstract 
 
A coherency-based algorithm to build new tracks from local Lagrangian information of particles is introduced. In 

Lagrangian Coherent Track Initialisation (LCTI), we mainly concentrated on how to initialise first four-time steps, new 
entries and lost tracks, by a physics-based iterative forward-backwards four frame technique as a complementary function 

of Kernelized Lagrangian Particle Tracking (KLPT) [1] and Shake The Box (STB) [2]. Methods like as KLPT and STB 
require initial tracks to start predicting and optimising trajectories. More accurate initialisation technique could prevent 
the algorithm from failing or improve the convergence speed. Moreover, particles are continuously entering into the 

domain, which means, no matter how effective the algorithm can track a specific number of particles, new trajectories 
must be fed into the tracked pool. Otherwise, all tracked particles would leave the domain and at some point, there would 

be no new tracks. In the case of having complex flow motion, some particles lose their trajectories at the end of each time 
step. It is vital to return those lost particles into the tracked pool since an increasing number of lost tracks will increase 
the chance of being ignored by the algorithm as ghost or noise. The idea is that new entry and lost particles follow the 

same behaviour of their surrounding neighbours which means a new track is built if the trajectory is coherent with other 
neighbour tracks. 

 
a) 

 
b) 

 
Fig. 1 Top view of 3D flow behind a cylinder, True track detection comparison between a) using Lagrangian Coherent 

Track Initialisation (LCTI) and b) Enhanced Track Initialisation (ETI), red lines are trajectories either untracked or 
mistracked, and grey lines are true tracks. Eulerian vector field is in the background.  
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Four frame track initialisations methods have been recently developed such as Enhanced Track Initialisation 

(4BE-ETI [3]) by looking for all track possibilities or four-frame best estimate (4BE) [4] by looking for nearest neighbours 
in frames until a unique track is found. The current coherency-based initialisation technique is following the same four 

frame approach but tries to find a coherent solution instead unique solution. Coherent refers to a group of particles which 
are spatially and temporally having same Lagrangian behaviour. This requires a function to determine information of 

coherent and non-coherent locally. There are many available concepts to identify Lagrangian Coherent Structures (LCS) 
[5] from estimating separatrix lines or surfaces which divide structures into different coherent regions. In Lagrangian 
frames, separatrices can be achieved from a scalar value called Finite-Time Lyapunov Exponent (FTLE) [5] by measuring 

the amount of stretching between the target particle and its neighbour particles over the time [6]. If a possible track is 
coherent with nearest tracks, then it will be indexed into track pool. This process continues iteratively until no track is 

found to be coherent with track pool. 
 

 
Fig. 2 Side view of particle trajectories colored by velocity magnitude in Jet Impingement at 0.03 ppp, low-velocity tracks 

away from the jet core are filtered for clear qualitative view thanks to the colorbar. 
 

LCTI was tested using synthetic data over a cylinder obtained from 3D direct numerical simulation (DNS) at 
Reynolds number of 3900 and experimental jet impingement flow at Reynolds number of 2500. Both ETI and LCTI were 
computed in long tracks for the sake of qualitative visualisation although they are four frames. Figure 1 shows 

improvements compared to ETI at 0.05 ppp in a slice of 4D*2D*2D. High level of shear and velocity gradients exist in 
both sides of the vortex formation region in which LCTI has over 10 per cent more true tracks. Meanwhile, there is higher 

accuracy in track detection where the vortices are formed. Figure 2 also shows particle trajectories when a high accelerated 
jet impinges into a solid. The proposed method is able to follow complex motions such as vortex rings around the jet that 
their signatures can be seen from particle motions.  
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Abstract 
This paper proposes a data assimilation method based on artificial intelligence (AI) to increase the spatial and temporal 

resolution of time-resolved three-dimensional Particle Tracking Velocimetry (4D PTV) data. Learning 3D or 4D flow 

patterns through AI can result in excellent generalization ability of the resulting model and a decrease in error and noise 
because it learns statistical data based on the neural network algorithm, which can be stored in a database. The 4D PTV 

was adopted to measure the instantaneous velocity field of a side-view mirror model in a wind tunnel (Kim et al., 2020). 
Helium-filled soap bubbles were used as tracers and the Shake-The-Box algorithm was used for particle tracking from 

images obtained by four high-speed cameras. The ensemble-averaged velocity fields and the features of vortex 
structures were analyzed. The 4D pressure fields were calculated by solving a Poisson equation using on the 4D PTV 
data. The temporal and spatial resolutions of the velocity and pressure field were increased using an Adaptive Neuro-

Fuzzy Inference System (ANFIS) with the experimental data as a ground truth to predict wake flow behind the model. 
The ANFIS parameters were optimized as 300 epochs and a percentage of training data of 70%. The high-resolution 

ANFIS model was used to obtain the power spectra of the sound-pressure level spectra of the flow pressure fluctuations 
to examine the flow and noise characteristics of the side-view mirror model. To determine the three-dimensional flow 
structure and noise characteristics of the side-view mirror model, the instantaneous velocity and pressure field were 

deduced from the high-resolution ANFIS model. Vortex shedding phenomena and flow-induced noise are discussed 
based on the power spectrum and sound pressure level spectra. 

Fig. 1 presents the instantaneous streamwise vortex structures in the wake of the side mirror model. Compared to the 
ensemble-averaged results (Fig. 1 (a) and (b)), the effects of data assimilation were certainly apparent. The AI-based 
data assimilation results (Fig. 1 (c)-(f)) showed much smaller vortex structures as a result of the four-fold increase in the 

spatial resolution. Moreover, the four-times higher temporal resolution of the ANFIS model revealed much more small-
scale streamwise vortical structures than those from only an enhancement of the spatial resolution. These data 

assimilation results provide a better understanding of the small turbulence structures and allow for more in-depth 
analysis by recovering the missed data due to the resolution limit of the experiment. The ANFIS-based machine-

learning algorithm worked well for finding the hidden three-dimensional vortical structures. 

 
Fig. 1 Comparison of the instantaneous 3D streamwise vortex structures between the raw and assimilated data 
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From the ANFIS model with improved temporal and spatial resolution, it was possible to extract the instantaneous 
velocity and pressure fluctuations at a specific location in the flow field. After obtaining the power and noise level 

spectrum from the time series data, it was possible to obtain the shedding frequency of the vortex from the side mirror 
model and identify the noise source from the fluctuation of the flow pressure. Fig. 2 shows three locations where the 

velocity and pressure are extracted from the horizontal plane at z/H = 0.5. Position 1 (P1) is in the recirculation zone 
(x/H = 0.2, y/H = -0.2), where backflow occurs behind the model. Position 2 (P2) is located at the wake shear layer 

region (x/H = 0.5, y/H = -0.3) with a high streamwise velocity. Position 3 (P3) is in the area where the trailing vortex 
appeared near the central region (x/H = 1.0, y/H = -0.1) of the wake after passing the recirculation zone downstream of 
the model. 

 
Fig. 2 Measurement positions at z/H = 0.5 

Fig. 3 (left) compares the instantaneous pressure extracted from the raw data and the ANFIS model with a four-fold 
higher temporal resolution. For a better comparison, only 1.5 seconds was selected. The overall change coincided with 
each other, but the pressure signal from the ANFIS model appeared smoother.  

Fig. 3 (right) compares the SPL spectra for different positions behind the side mirror model. The magnitude of the 
noise level was highest at P1, followed by P2 and P3. In Fig. 4, the SPL spectra obtained using the raw pressure data 

and the instantaneous pressure extracted from the ANFIS model were compared. The SPL level spectrum obtained 
using the raw data revealed a noisy spectrum, whereas that from the ANFIS model depicted a smooth spectrum. The 
peaks of SPL are dominant at 10 - 200 Hz in the low-frequency band. This region showed strong air resonance, and 

most of the noise felt by humans was in this band. At P1, the peak frequencies were found at 10, 20, 40, 80, and 120 Hz, 
which are the harmonics based on 10 Hz. At P2, the peak sound frequencies were observed at 50, 100, and 200 Hz, 

which are the harmonics of vortex shedding frequency, 50 Hz. At P3, peaks appeared at 100 and 200 Hz, the same as 
P2, which can be expected from the similar pressure fluctuations shown in Fig. 3. 

The AI-based data assimilation method demonstrated a good candidate for a 4D PTV post-processing method that 
provides a better understanding of the small turbulence structures and allows for more in-depth analysis by recovering 
the missed data due to the resolution limit of the experiment. On the other hand, the accuracy was highly dependent on 

the raw data, which was used as the ground truth. To provide a full turbulence spectrum, higher-resolution 4D PTV data 
will be necessary for ANFIS training. Further research will be needed to find a super-resolution AI model to resolve the 

Kolmogorov scale of turbulent flows with high computing power.  

 
Fig. 3 Comparison of the instantaneous flow pressure fluctuations (left) and sound pressure level spectrum (right) 

between raw and assimilated data taken at P1, P2, and P3 in the horizontal plane at z/H = 0.5 
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Abstract 

A sequential data assimilation (DA) method is proposed based on the contineous adjoint formulation. A forcing F, 
which need to be optimized using the adjoint system, is added to the primary Navier-Stokes (N-S) equations to drive the 

assimilated flow toward the observations at each time step. Compared to the four-dimensional variational method 
(4DVar) which requires the forward integration of the primary system and the backward integration of the adjoint 
system, the present approach integrates the primary-adjoint system all the way forward, discarding the requirement of 

data storage at every time step and being less computational consuming and space saving. This sequentionla DA 
method is applied in the pressure determination from turbulent velocity fields measured by particle image velocimetry 

(PIV). The pressure determination method of integration from eight paths (Dabiri et al., 2014) is also involved for 
comparison. While the integration method shows significant overprediction of the pressure in the wake region in flow 

over a circular cylinder due to the small size of the flow field of view, the present DA scheme recovers the pressure 
field quite well. Using the synthetic PIV data of a turbulent jet as the observation, the present DA method is able to 
determine the instantaneous pressure field precisely using the three-dimensional velocity fields regardless of the 

observational noise. For the two-dimensional three-component (3C) or two-component (2C) velocity fields, which are 
not sufficient for the pressure determination in integration method due to the lack of the off-plane derivatives, the 

present DA method is able to reproduce the pressure fields whose statistics agree reasonably well with that of the 
referential results. Whereas, the 3C and 2C velocity fields yield quite similar results, indicating the possibility of the 
pressure determination from planar-PIV measurement in turbulent flows. The tomography PIV (tomo-PIV) 

measurement is also tested as the observation, while a clear pressure pattern is obtained by the present DA method. 
 

Fig.1 Velocity fields obtained by (a-b) LES and (c-d) DA. The 
observation region locates in the downstream of the dashed line.   

Fig. 2 Instantaneous pressure fields 
obtained by (a) DA and (b) integration  
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Abstract 

Data-assimilation aims at combining experimental and numerical approaches to obtain more detailed solutions of 

complex flow fields, maintaining high fidelity with reasonable computational efforts. While adjoint-based data-

assimilation delivered promising results for laminar flows (Gronskis et al. 2013), the numerical cost of the optimization 

process becomes prohibitive for unsteady turbulent flows. In that case, we may consider a much simpler data-driven 

approach called “nudging” or “state estimator/observer”, originally introduced in the fields of meteorology or control 

theory, where partial field measurements are introduced as a feedback term to control the evolution of the governing 

equations.  Using experimental wall-pressure measurements or Particle Tracking Velocimetry (PTV) data, Nisugi et al. 

(2004) and Yamagata et al. (2008) successfully used this method to reconstruct the low-Reynolds laminar flow around a 

squared cylinder. More recently, Di Leoni et al. (2020) performed a nudging of the three-dimensional unsteady Navier-

Stokes equations to reconstruct large and small-scale structures in the canonical homogeneous and isotropic turbulent 

flows. To limit the computational cost, the Reynolds-Averaged Navier-Stokes equations closed with a turbulence model 

are often used to model aerodynamic flows. We propose here to reconstruct dense velocity and pressure fields around a 

square cylinder flow at Reynolds number Re=22,000 by nudging the Unsteady Reynolds-Averaged Navier-Stokes 

(URANS) equations with sparse unsteady velocity measurements. 

Following the terminology introduced by Di Leoni et al. (2020), a Lagrangian nudging is considered in the present 

contribution since the sparse data are obtained from a PTV measurement of velocity fields obtained with direct 

numerical simulation (DNS). A local feedback forcing is then introduced in the momentum URANS equations, that can 

be rewritten as  

𝜕𝒖

𝜕𝑡
+ (𝒖 ⋅ 𝜵)𝒖 = −

1

𝜌
𝜵𝑝 + 𝛁 ⋅ [(𝜈 + 𝜈𝑡)𝜵𝑺𝒖] + 𝛼ℎ𝑇(ℎ(𝒖) − 𝑚), 

where ν and νt denote the molecular and turbulent viscosity, respectively. The Spalart-Allmaras model is used here to 

determine the turbulent viscosity. The parameter α denotes the magnitude of the nudging term, the latter being non-zero 

only at positions of the PTV measurements. Here, it is proportional to the difference between the true/experimental 

velocity data 𝑚 and the measured velocity field h(u), where the operator h projects the numerical velocity field onto the 

measurement space and might also account for its spatial resolution.  By marching in time these equations with 

measurement data available at each time step, we investigate how the solution of the URANS equations converges 

towards the DNS solution. The latter is also used to quantify the performance of this data-assimilation approach 

independently of the number of sampling points used for the nudging. 

 

Preliminary results of the flow reconstruction are shown in Figure 1. Figure 1(a) shows the lift coefficient 𝐶𝐿 as a 

function of time for the true solution (DNS) and standard URANS solution denoted by black and blue curves, 

respectively. While the initial solution for URANS is chosen to qualitatively match the DNS flow field at t=0, we 

observe the phase between both histories shifting with increasing simulation time. This is also visible in figure 1(b) 

comparing snapshots of vorticity fields obtained at three instants (in columns) with the different flow models (in rows). 

When comparing contours of top and middle rows corresponding to the standard URANS and DNS method, 

respectively, we can observe the phase difference developing in the wake due to discrepancies in the shedding 

frequency of the vortex street.  Firstly, we select a fixed set of grid points (indicated by the black dots in the contour 

plot of the middle row in figure 1b), where we sample velocity data from the DNS at each URANS time step. This data 

is now used to nudge the URANS equations at these specified positions, while the nudging term is zero elsewhere. 

Using 680 sampling points out of 46,228 grid points is sufficient to synchronize the nudged simulation with the DNS. 

Differences with respect to the true velocity field are not only reduced at sampling positions, but also at locations where 

no sampling data is available. The bottom row of figure 1(b) showing nudged vorticity fields agrees qualitatively well 
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with the true solution corresponding to DNS data (middle row). The lift coefficient of nudged and standard URANS 

methods is shown in figure 1(c) corresponding to red and blue curves, respectively. The red curve in figure 1(c) agrees 

very well with the black curve in figure 1(a).  

 

 
Figure 1: (a) The lift coefficient CL as a function of time for DNS (black) and standard URANS methods 

(blue). (b) Representative vorticity snapshots for standard URANS (top row), DNS (middle row), and 

nudged URANS (bottom row). (c) The lift coefficient CL as a function of time for nudged (red) and 

standard (blue) URANS methods. 

 

 

Secondly, we randomly change the location of sampling points for each time step. As the sampling data between 

consecutive time steps is uncorrelated, we consider this test case as a “worst-case” scenario mimicking PTV data. Even 

though the integral error is higher compared to the Eulerian test case described above (not shown here), we are still able 

to synchronize the nudged URANS simulation with DNS data and significantly improve standard URANS results. 

Future work will be dedicated to use simulated Lagrangian PTV data instead of random uncorrelated sampling point 

and to post-process the DNS data so as to select the large-scale flow features that are modelled by the RANS equations.  
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Abstract 

A data-assimilation approach is proposed to enhance the dynamic range by increasing a ratio of the number of PTV 
vectors to the number of unknowns. This approach is fundamentally based on the Vortex-In-Cell (VIC) method 

(Christiansen 1973, Ould-Salihi et al. 2000, Morgenthal and Walther 2007, and others). The VIC method derives a flow 
field on a Cartesian grid from a vorticity field through the Poisson equation with prescribed boundaries of velocity and 
acceleration. In addition to that, VIC is able to simulate a time-marching flow field using Lagrangian vortex particles. 

Using these features, Schneriders et al. (2014) successfully recover unmeasured time-steps between time-undersampled 
PIV snapshots. Instead of the Lagrangian time-marching fashion of VIC, the present approach proposes the Eulerian 

time-marching utilizing the vorticity time derivative, e.g., ω (t + Δt) = ω (t) + Δt ∙∂ω/∂t (t). Here, unlike the vorticity 
field, the boundary conditions have no potential to produce meaningful information through the time-marching because 
of their extrapolated and depleted information due to the distance from PTV realizations. Therefore, the optimization 

variables consist of not only a single vorticity field but also multiple boundaries as the number of input PTV snapshots. 
Consequently, an enhanced dynamic range can be expected when a large number of PTV snapshots are simultaneously 

considered. 
 
The cost functions regarding the entire snapshots are evaluated by VIC# (Jeon et al. 2018), which supplements 

additional constraints and coarse-grid approximation to VIC+ (Schneiders and Scarano 2016). The velocity boundary is 
regularized by minimizing a difference between its discrete-time derivative and the acceleration to ensure that the 

optimization converges. The boundary conditions at fractional instances are interpolated based on second-order time 
discretization, i.e., linear interpolation for the acceleration. Additional adjoints concerning the time-marching and the 

boundary regularization are derived. Two time-marching schemes, i.e., the Euler method and the Runge-Kutta method, 
are introduced. The present method is implemented in a graphic processing unit (GPU) for computational speed.  

 

The numerical assessment is conducted by synthetic PTV data, whose ground truth is known. Fig. 1 visually 
compares reconstructions from the VIC# and the present method with the reference. It is shown that the present 

approach well recovers the minor vortical structures and thus the connections between isolated ones as well.  
 

 
Fig. 1 Flow structures visualized by iso-surfaces of λ2 = –30,000 s-2: LES reference (left), VIC# from a single PTV 

snapshot (middle), and the present method from 13 PTV snapshots using the Runge-Kutta method (right) 
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Fig. 2 shows the root-mean-square (RMS) error of velocity and the quality of swirling strength evaluated as the 
cross-correlation of negative λ2 between the reference and the reconstructions. When no time-marching integration for 

fractional instances between consecutive PTV snapshots is conducted (M = 1), it is deemed that truncation errors are 
accumulated as the number of input PTV snapshots (L) increases. Here, M indicates a number of the time-marching 
integrations per one additional PTV snapshot. When the computation cost is same (M = 4), the Euler method and the 

Runge-Kutta method show similar error and quality curves. 
 

   
Fig. 2 RMS error of velocity (left) and quality of swirling strength (right) 
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Abstract 

The time-segment assimilation (TSA) method aims at refining the spatial reconstruction of the sparse velocity 
field obtained from 3D time-resolved motion analysis of fluid flow tracers. The method leverages upon the spatio-
temporal information from a finite number of successive time samples of particle velocity, commonly denoted as tracks, 

coming from PTV or STB analysis (Maas et al. 1993; Schanz et al. 2016). The working principle and hypotheses 
introduced by Schneiders and Scarano (2018) are further discussed here, identifying three regimes of operation: in the 

sparse mode (figure 1-left) the length of the trajectories is small compared to the average distance between tracers. In the 
regime of adjacent tracks (figure 1-middle), the time segment length is such that the length of the tracks equals the particles 
distance. This regime is particularly interesting in that it significantly decreases the sparsity of measured data in terms of 

time-space distance. When the length of the time segment is further increased (figure 1-right), the spatial distance between 
tracks decreases, but the time distance increases. This regime is expected to increase marginally the quality (viz. 

resolution) of the reconstruction, and the overall benefit may be lost, due to the larger computational effort. 
 

 
Fig. 1 Representation of the three working regimes for TSA. Left: three particles (p1, p2 and p3) with short streak length 

(based on three recordings, N = 3). The streak length remains smaller than the distance (dashed lines) among 
neighbouring tracks. Middle: the streak length (N = 15) is comparable to the inter-particle distance, which reduces the 

distance between the considered tracks. Right: the streak length (N = 29) exceeds the inter-particle distance and the 
distance between tracks is reduced, yet marginally. 

 
The working algorithm of TSA in terms of the data assimilation to the flow governing equations makes use of the vorticity 

transport equation in the inviscid incompressible regime, i.e.: �� ��⁄ =  (� ∙ ∇ )� − (� ∙ ∇)�. 

The optimization process is based on the Vortex-in-Cell framework, similarly to the VIC+ methodology (Schneiders 

and Scarano, 2016). Therefore, a vortex-particle discretization is used for the numerical integration of the vorticity 

field, from which the velocity field at every instant of the assimilated time-segment is calculated by solving the 

Poisson equation ∇�� =  −∇ × �. 

The ability of TSA in delivering high-resolution velocity reconstructions is inquired by numerical and experimental 

assessments. A synthetic field of a 3D sine-wave lattice, popular among previous works, focuses on the amplitude 
modulation. The latter effect appears to be reduced when moving from the assimilation of a short time sequence, towards 
a longer time segment. Furthermore, it is observed that the result of the numerical process is independent of the time 

interval chosen for time-marching, provided that the CFL condition is respected. 
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Fig. 2 Normalised velocity response u* to a sinusoidal distribution as a function of the inter-particles distance. The 

parameter r* is the normalised wavenumber, computed as the ratio between the average inter-particle distance and the 
flow wavelength. The parameter l* on the top axis represents the ratio between the linear size of the cubic element used 

as linear filter and the flow wavelength. The parameter Nt indicates the track length. 

 

The experimental analysis is performed on data from a multichannel swirling jet (Ianiro et al. 2019). The analysis 
indicates that the vorticity field is enriched when the assimilation is conducted with a time segment corresponding to a 
streak length in excess of the particles average distance. 

 

          
Fig. 3 Instantaneous velocity field (gray isosurface) and vortex structure (Q-criterion, radial distance as color coding) of 

a swirling jet. Baseline for data assimilation with TSA. (Repr. from Ianiro et al. 2018) 
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Abstract 
 
This works presents an evolution of the FlowFit method for reconstructing incompressible flow fields (specifically 

velocity and pressure) based on scattered velocity and acceleration data. It can thus be used to process the data obtained 
from Lagrangian Particle Tracking (LPT) in order to recover structures of fluid motion. The goal of this development 

was to improve both accuracy and speed over its predecessor so this method can be used in experiments with large 
measurement domains and/or a high number of seeding particles. The method will be explained and assessed in 
comparison with its predecessor using synthetic data derived from fluid simulations. 

FlowFit2 (Gesemann 2016) and FlowFit3 recover the flow fields by recasting the problem as a cost function 
minimization problem where the solution to this optimization problem represents the velocity and pressure fields that 

are consistent with the scattered data. But whereas in FlowFit2 we dealt with physical constraints such as mass 
conservation, momentum conservation and no-slip conditions only by penalizing constraint violations as part of the cost 
function (penalty method), FlowFit3 uses a mix of techniques to satisfy most of these constraints exactly (divergence & 

pressure Poisson equation) and greatly reduce other constraint violations (no-slip conditions). In addition, FlowFit3 uses 
a different set of base functions for a continuous representation of the flow field based on a staggered grid and mixed-

order B-splines. This allows the divergence constraint to be satisfied exactly over the whole domain instead of just over 
a finite set of grid points. To satisfy all the constraints we employ all of the following techniques depending on the 

constraints: 
(1) Substitution: Pressure is derived from velocity so that the Poisson equations for pressure are always 

satisfied automatically. 

(2) Orthogonal Gradient Projection: The cost function’s gradient is projected into a divergence-free linear 
subspace. Therefore, a gradient-based solver for the optimization problem will not be tempted to leave this 

subspace and the divergence will always stay zero everywhere. 
(3) Augmented Lagrangian Method: This is a simplification of the method of Lagrange multipliers for 

constraint optimization where the Lagrange multipliers are not variables that are optimized but updated 

after each optimization pass (Hestenes, 1969). We use this to deal with conditions related to immersed 
boundaries (e.g. no-slip on a wall). 

Techniques (1) and (2) both involve solving 3D Poisson problems on a cuboid domain with the same size and same 
homogeneous Dirichlet boundary condition. They only differ in the filter kernel for the Laplace operator. These types of 
problems can be very efficiently solved because the Eigen decomposition of the respective equation systems can be 

efficiently computed using 3D discrete sine transforms (DST), for example, using the popular FFTW library. See figure 
1 for a graphical visualization of the cost function. 
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Fig. 1 Graphical representation of the cost function. 
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Abstract 

Hybrid simulations combining PIV and DNS have successfully produced solutions of unsteady flows driven by time-

resolved velocity measurements in the past studies [1,2].  This data-assimilation technique is able to suppress 

errors/noise associated with PIV data acquisition, to estimate unsteady pressure fields only from velocity measurement 

[3], and to generate a complete set of flow quantities compatible with the governing equations over time.  Namely, we 

can replicate measured unsteady flow fields in a computational domain with the resolution and the compatibility 

equivalent to CFD solutions based on PIV data.  This greatly enhances our post-processing capability of unsteady flows. 

  

 Likewise, we wish to assimilate unsteady surface pressure measurement into an unsteady CFD simulation 

(simpler ideas were explored in the past [4,5]).  Recent pressure sensitive paint (PSP) techniques allow us to measure 

unsteady pressure variation on a painted surface at transonic Mach numbers, while the noise level is relatively high and 

the resolution is not as high as CFD.  This study aims to develop a hybrid-simulation technique combining unsteady 

PSP and an unsteady compressible CFD solver.  By forcing the pre-scribed surface pressure over a wall as the Dirichlet 

boundary condition, we solve the compressible Euler equation so that the PSP data rectify the CFD solution (see Fig. 1): 

 

 pn
Hybrid = [1 – f (c)] pn

Euler+ f (c) pn
PSP ,      (1) 

 

where the surface pressure of the Euler solver pn
Euler extrapolated from the flow field and that directly from the PSP 

measurement pn
PSP are linearly combined via a weight function  and a function 0 ≤ f(c) ≤ 1 that specifies the measured 

surface region; subsequently, the flow field is marched by the unsteady CFD solver by imposing the hybrid surface 

pressure pn
Hybrid on the wall.  The hybrid simulation then finds a solution of the flow field that best fits the PSP 

measurement.  As a result, we expect that this data-assimilation technique can suppress the measurement noise and 

enhance the spatial resolution of the measured pressure fields.  More importantly, it expands surface measurement data 

into another dimension via CFD simulation. 

 
Fig. 1 Illustration of the PSP-Driven hybrid simulation. (a) Schlieren photograph from [6]. PSP applied on the red 

dotted line. (b) Density gradient of 2D solution of the pure Euler-equation solver. (c) That of the hybrid simulation. 

 As an example, we 

consider NASA CRM65 airfoil 

with a free-stream Mach number 

of M∞ = 0.74 in two dimensions, 

and impose pre-scribed wall 

pressure on the suction side by 

hypothesizing that PSP data 

from [6] are available (we first 

force steady Cp at  = 5o).  The 

Euler-equation solver adopts 

Roe’s flux-difference-splitting 

scheme with a C-type mesh fitted 

with the tunnel height.  The pure CFD 

Fig. 2 Comparison of the Cp profiles on the suction side of NASA CRM65 

at  = 5o. (a) Euler-equation solvers versus the experiment from [6].       

(b) Hybrid simulations versus the experiment. 
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solver predicts the shock position more downstream (see Fig.1b computed by the 1st-order Euler-equation solver) than 

that measured in the experiment for an unknown reason (see Fig.1a).  The 2nd-order Euler-equation solver, which has 

been verified with a NACA0012 benchmark problem [7], locates the shock even further downstream (see Fig. 2a, where 

the surface pressure in the CFD is evaluated at interior grid points).  By assimilating the steady Cp profile given in [6] 

into the CFD solver, the hybrid simulation corrects the shock position not only on the airfoil surface but also away from 

the wall over the suction side:  In fact, we can see the effect of the hybrid simulation on the surface Cp profiles in Fig. 

2b and also the shock position in space, as compared with the Schlieren photograph (see Figs.1c and 1a).  This example 

demonstrates that the hybrid simulation can properly drive the CFD solution by the steady PSP measurement.   

 

 Sugioka et al. [6] 

reported that  = 6o, the shock 

wave starts oscillating (see 

Fig. 16 in [6]), while the 

unsteady Euler-equation solver 

predicts a steady flow field, as 

shown in Fig. 3.  To examine 

the capability of implementing 

unsteady PSP measurement in 

the hybrid simulation, we 

produce a synthetic Cp profile 

which sinusoidally switches 

between the time-averaged profile 

from the experiment and the 

solution from the Euler-equation solver (refer to Fig. 4a) with a period suggested by the experiment [6].  The hybrid 

simulation can then stably produce an unsteady flow field, in which the shock wave oscillates between the numerically 

predicted position and the measured position (see Figs. 4b and 4c).  Although such a synthetic surface pressure field is 

not physically meaningful, this test suggests that the hybrid simulation can incorporate unsteady PSP data.  In the 

presentation, we discuss details of the implementation of the Dirichlet boundary condition on the wall surface as well as 

the limitations and the potential issues of this PSP-driven hybrid simulation. 

 

 
Fig. 4 Application of the PSP-drive unsteady hybrid simulation for NASA CRM65 at  = 6o. (a) Comparison of Cp 

profiles, which are used for the synthetic Cp profile. (b) Density gradient of the hybrid simulation at the phase close to 

the experimental Cp profile (1st-order solver). (c) Cp profile over time produced by the hybrid simulation. 
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Fig. 3 First-order Euler-equation solution for NASA CRM65 at  = 6o. 

(a) Density gradient. (b) Cp profile over time. 
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Abstract 

This work proposes a direct integration of experimental data within low-fidelity CFD simulations to enhance the accuracy 

of the latter. The computational cost of high-fidelity simulations (i.e. LES, DNS), remains relatively high for their use in 

optimization studies, especially for high Reynolds number flows. As a result, CFD analysis makes most often use of the 

simplified approach offered by the Reynolds-averaged Navier-Stokes (RANS) formulation (Ferziger and Períc, 2002; 

Argyropoulos and Markatos, 2015). Considered to be the workhorse in aerodynamic engineering for many years to come 

(Xiao and Cinnella, 2019), RANS solvers model the entire turbulent spectrum, achieving lower computational cost and 

higher robustness with respect to mentioned higher fidelity models. The cost of the amount of required modelling is the 

aforementioned lower accuracy (Davidson and Peng, 2003). In order to enhance the accuracy of low-fidelity simulation, 

several data assimilation (DA) methodologies have been presented in the literature. Among them, three main categories 

have emerged: variational methods (Foures et al., 2014; among others), Kalman filter (KF; Kalman, 1960; Kato et al., 

2015) and state observer methods (reviewed in Hayase, 2015). In this work, the application of a state observer algorithm 

as data assimilation technique for a steady RANS simulation is investigated. The concept of state observers, introduced 

by Luenberger (1964), is nowadays a key concept in the field of control theory. In this framework, the state observer 

refers to the insertion of a momentum source f in the momentum equation as follows: 

(�̅� ⋅ ∇)�̅� =  −∇�̅� + 𝜈Δ�̅� − ∇ ⋅ 𝐑 + 𝐟 

where R represents the Reynolds stress tensor. The relative strength of the body force term represents the feedback and 

it is proportional to the local difference between the simulation and the experimental time-averaged velocities (𝐮ref
∗ ), that 

reads 𝐞 =  (𝐮ref
∗ − 𝐮). In this work, two different forms of the feedback term have been considered: data assimilation 

based on  state observer i) with proportional feedback (DASOP), and ii) with proportional-integral feedback (DASOPI). 

The feedback control law used in the DASOP method is given by 𝐟𝐃𝐀𝐒𝐎𝐏 =
𝐾𝑝

𝐷
𝐞 ∘ |𝐞|, where 𝐾𝑝 is the proportional 

feedback gain, the symbol ∘ represents the Hadamard product and |𝐞| is the component-wise absolute value of the error 

|𝐞| =  [|ex|, |ey|, |ez|]𝑻.  The forcing term for the DASOPI method is given by 𝐟𝐃𝐀𝐒𝐎𝐏𝐈 =
𝐾𝑝

𝐷
𝐞 ∘ |𝐞| +

Ki

D
∑ 𝐞n ∘ |𝐞n|𝑁

𝑛=1 , 

where 𝑁 is the current iteration and 𝐾𝑖 is the integral feedback gain and 𝐞n is the local error vector at the iteration 𝑛. The 

gains 𝐾𝑝 and 𝐾𝑖 are scalars as they are assumed equal for each component of the error and constant along the simulation 

and spatially in the entire simulation domain. The values corresponding to cells where 𝐮ref
∗  is not available are set to 0, 

thus disabling the forcing term. This technique is demonstrated on an experimental database that describes the time-

average three-dimensional flow behind a generic car-mirror model, formed by half a cylinder with a quarter of a sphere 

mounted above it. The experiment is run at the TU Delft High Speed Laboratory, in an open-jet low-speed wind tunnel 

(W-tunnel). The experimental setup is shown in Fig. 1 (left). The Reynolds number is ReD = 8 × 104, obtained by 

considering a free-stream velocity 𝑈∞ = 12 m/s and a base diameter equal to 𝐷 = 10 cm.   

The velocity field is obtained by means of Robotic Volumetric PIV measurements (Jux et al., 2018). The instantaneous 

particle positions and velocities obtained by the particle tracking algorithm Shake-The-Box (STB) implemented in the 

LaVision software DaVis 10 are then ensembled averaged. Through this operation, a grid of 151 x 84 x 69 data points is 

obtained, which represents 𝐮ref
∗ . 

Once obtained the time-average flow field 𝐮ref
∗  from the experiment, the effects of the different forcing terms and the 

spatial density of the measurement input to the numerical simulation are studied.  

All the numerical simulations have been performed with the open-source C++ toolbox OpenFoam 1706. For the baseline 

simulation, the one with no forcing applied, the standard steady solver simpleFoam implemented in OpenFoam is used. 
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For the assimilated simulations, the feedback term is included within an in-house developed version of the same solver. 

Turbulence modelling is based on the k-ω SST model.  

For what concerns the spatial density of the forcing points, the normalised mean distance between neighbouring forcing 

cells 𝛾 = 𝜆/𝐷  has been varied, where 𝜆 = √
4

3𝜋𝐶 

3
 and 𝐶 = 𝑁𝑓/𝑉, with 𝑁𝑓 equal to the number of forced cells, selected 

randomly, and V the total forced volume. The state observer approach forces locally the solution to comply with the 

reference value and the extent of the region modified by the forcing input is discussed. The velocity distribution and flow 

topology obtained with data assimilation are compared with attention to the object wake and the reattachment point where 

the largest discrepancy is observed between the different approaches. Fig. 1 (right) shows the behaviour of 𝜀 ,̅ the spatial 

average of the normalized error between the reference data and the simulations in the forced volume, at different values 

of 𝛾. The results show that both DASOP and DASOPI are able to diminish the distance between the simulation and the 

reference. The addition of the integral term allows to obtain a lower mismatch between simulation and the reference data, 

with increasing benefits when the distance between forced points is reduced. 

          
Fig. 1 Setup of the experiment (left) and spatial-averaged relative error ε̅ with respect to the relative mean force point 

distance γ (right). 
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Abstract 
 

Flow reconstruction by data assimilation from measurements can aim at determining unresolved temporal or 
spatial scales, but also at extrapolating information to zones where measurements are unavailable or inaccurate. In both 
respects, a legitimate question for the experimentalist, which is still open to date, is whether performing the 
measurements at certain points of the flow (in the case of pointwise sensors), or in certain zones (e.g. in the case of 
PIV/LPT), might lead to better reconstructions than when choosing the locations traditionally, i.e. mostly based on 
physical knowledge and intuition. Our aim in the present contribution is to address this question, taking as objective the 
mean flow reconstruction, and starting from the case of pointwise measurements. The adopted formalism is in fact 
versatile, and will be straightforwardly extended to field measurements such as PIV or LPT in future steps. It firstly 
involves adjoint-based data assimilation to retrieve the full mean flow from punctual mean velocity measurements. 
Sensor placement methodologies are then developed to determine optimal locations for these punctual measurements in 
order to maximize the reconstruction performances of data assimilation.  
 To perform the reconstruction of a full mean flow from punctual mean velocity measurements, we here rely on 
the adjoint-based data assimilation procedure proposed by Foures et al. (2014). The latter consists in determining the 
(supposedly unknown) divergence of the Reynolds stresses in the Reynolds-averaged Navier-Stokes (RANS) equations 
minimizing the discrepancies between the corresponding mean flow and the available measurements. Mathematically, 
this can be expressed as:  

min
𝒇

𝐽 =
1

2
‖𝒚 − 𝒉(𝒖, 𝑝)‖  

under the constraint 
∇ ⋅ 𝒖 = 0

(𝒖 ⋅ ∇𝒖) = −
1

𝜌
∇𝑝 +

1

𝑅𝑒
Δ𝒖 + 𝒇

 

 
In the above (RANS) mean flow equations for 𝒖 and 𝑝, the optimized term 𝒇, hereafter also termed forcing, indeed 

identifies to the divergence of the Reynolds stresses, i.e. 𝒇 = −∇ ⋅ 𝒖′ ⊗ 𝒖′. In the objective functional 𝐽, 𝒚 and 𝒉 
respectively denote the measurements, gathered as a single vector, and the measurement operator, extracting the values 
of the numerical mean flow (𝒖, 𝑝) at the sensor locations, possibly also modelling their spatial resolution. Figure 1 
illustrates the mean flow around a circular cylinder at 𝑅𝑒 = 150 along with the corresponding forcing, which forms the 
ground truth flow to reconstruct in the present study. 

 

Fig. 1 Ground truth streamwise components of the mean velocity field (left) and associated forcing (right) for the flow 
around a circular cylinder at Re = 150. 

The flow obtained with this data assimilation procedure and using a regularly spaced network of (synthetic) velocity 
sensors is illustrated in figure 2 (left column). Discrepancies with respect to the true mean flow are clearly identifiable, 
both outside and in the wake. Besides, the retrieved forcing appears significantly different from the true one (shown in 
Figure 1). 
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In order to improve these reconstruction results, we propose to minimize the condition number of the Hessian 
matrix (defined as the ratio between its largest and smallest eigenvalues) which is associated to the cost function in the 
data assimilation problem. This amounts to enhance the observability of changes in the control vector of the data 
assimilation problem (Kang and Xu, 2012), namely here the forcing 𝒇 in the RANS equations. A difficulty here is the 
nonlinearity of the RANS equations, which makes the spectrum of this Hessian matrix vary with the forcing. This is 
solved through the development of the second-order adjoint model (Le Dimet et al, 2002) for the RANS equations, 
which allows designing an efficient optimization procedure to minimize the condition number of the Hessian. 
 Starting from the regularly spaced sensors, the application of this optimization procedure for sensor placement 
allows designing the network that is illustrated in figure 2 (right column). The mean flow obtained through data 
assimilation relying on these optimized sensors appears significantly closer to the true one compared to the use of the 
first-guess sensors, with vanishing discrepancies in the wake. The reconstructed forcing is also closer to the true 
divergence of the Reynolds stress tensor. 

This numerical experiment confirms the validity of the proposed sensor placement methodology. Future work 
will be dedicated to its extension to the reconstruction of higher Reynolds number, turbulent flows, the design of an 
actual experiment, and to the optimization of other types of measurements, including field measurement (e.g. choice of 
the location of PIV/LPT planes/volumes when reconstructing large flow volumes which cannot be completely 
measured).  

 

 

 

Fig. 2 Reconstructed flow relying either on first-guess sensors (left column) or on optimized sensors (right column). 
First to third rows respectively report the streamwise component of the reconstructed mean flow, its difference with the 

ground truth, and the streamwise component of the reconstructed forcing, respectively. 
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